
Dimitra Giannakopoulou and Corina Păsăreanu 
CMU / NASA Ames Research Center 

Automated 
Component-Based  

Verification 



!   component-based verification, for increased scalability, at design level 
!   early detection of integration problems 
!   use design level artifacts to improve/aid coding and testing  

compositional 
verification 

testing design coding requirements deployment 

C1 C2 

C1 

C2 

M1 

M2 

models implementations 

cost of detecting/fixing defects increases 
integration issues handled early 

component-based development  
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model checking 

void add(Object o) { 
 buffer[head] = o; 
 head = (head+1)%size; 
} 

Object take() { 
 … 
 tail=(tail+1)%size; 
 return buffer[tail]; 
} 

program / model 

property 
always(ϕ orψ) 

model checker 

YES (property holds)  
NO + counterexample: 

(provides a violating execution)  



model checking vs. testing  

model checking testing 



compositional 
verification 
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compositional verification 

M2 

M1 

A 

satisfies P? 

!   check P on entire system: too many states! 
!   use system’s natural decomposition into 

components to break-up the verification 
task 

!   check components in isolation: 

does system made up of M1 and M2 satisfy property P? 

does M1 satisfy P?  



“when we try to pick out anything by itself, we find 
it hitched to everything else in the universe”  

John Muir  



assume-guarantee reasoning 

“discharge” the  
assumption 

1.     〈A〉  M1   〈P〉 
2.  〈true〉  M2  〈A〉 

〈true〉 M1 || M2  〈P〉 

M2 

M1 

A 

satisfies P? 

introduces assumptions / reasons about triples: 

〈A〉 M 〈P〉   is true if whenever M is part of a  
system that satisfies A, then the system must  
also guarantee P 

simplest assume-guarantee rule (ASYM): 



examples of assumptions 

!   will not invoke “close” on a file if “open” has not previously 
been invoked 

!   accesses to shared variable “X” must be protected by lock “L” 
!   (rover executive) whenever thread “A” reads variable “V”, no 

other thread can read “V” before thread “A” clears it first  
!   (spacecraft flight phases) a docking maneuver can only be 

invoked if the launch abort system has previously been 
jettisoned from the spacecraft 



assume-guarantee reasoning 

how do we come up 
with the assumption? 



formalisms 

!   components modeled as finite state machines (FSM) 
–  FSMs assembled with parallel composition operator “||” 

•  synchronizes shared actions, interleaves remaining actions  

!   a safety property P is a FSM 
–  P describes all legal behaviors in terms of its alphabet  

–  Perr – complement of P 
•  determinize & complete P with an “error” state;  
•  bad behaviors lead to error 

–  component M satisfies P iff error state unreachable in (M || Perr) 

!   assume-guarantee reasoning 
–  assumptions and guarantees are FSMs 
–  〈A〉 M 〈P〉 holds iff error state unreachable in (A || M || Perr)  



example 

Input Output 
in send 

ack 

out 
Input 

 in send 

ack 

Output 
 out send 

ack 

require in and out to alternate (property Order) 

Ordererr  in 

 out 

 in  out 



parallel composition  

Input 
 in send 

ack 

Output 
 out send 

ack 

|| 



property satisfaction  

|| 

Ordererr  in 

 out 

 in  out 

Input 
 in send 

ack 

crex. 1: (I0, O0) out (I0, Oerror)   
crex. 2: (I0, O0) in (I1, O1) send (I2, O1) out (I2, O0) out (I2, Oerror) 

0 1 2 

0 1 



assume-guarantee reasoning  

|| 

Ordererr  in 

 out 

 in  out 

Input 
 in send 

ack 

send 

out 
send 

ack 

Assumption 

crex 1: (I0, A0, O0) out  X 
crex 2: (I0, A0, O0) in (I1, A0, O1) send (I2, A1, O1) out (I2, A0, O0) out  X 

0 1 2 

1 0 

1 0 



the weakest assumption 

!   given component M, property P, and the interface of M 
with its environment, generate the weakest environment 
assumption WA such that: 〈WA〉 M 〈P〉 holds 

!  weakest means that for all environments E:  

〈true〉 M || E 〈P〉 IFF 〈true〉 E 〈WA〉 



weakest assumption in AG reasoning  

〈WA〉 M1 〈P〉 holds (WA could be false) 
〈true〉 M2 〈WA〉 holds implies 〈true〉 M1 || M2 〈P〉 holds 
〈true〉 M2 〈WA〉 not holds implies 〈true〉 M1 || M2 〈P〉 not holds 

1.     〈A〉  M1   〈P〉 
2.  〈true〉  M2  〈A〉 

〈true〉 M1 || M2  〈P〉 

weakest assumption makes  
rule complete 

for all E, 〈true〉 M || E 〈P〉 IFF 〈true〉 E 〈WA〉 



assumption generation [ASE’02] 

STEP 1: composition, hiding,         
minimization 

property true! 
(all environments) 

STEP 2: backward propagation of 
error along τ transitions 

property false! 
(all environments) 

STEP 3: property extraction (subset 
construction & completion) assumption 



step 1: composition & hiding  

send 

ack 

Input ||  Ordererr \ {in} 

0 1 2 3 

4 

ack 

send out 

out 

out 

     τ	
out 

out 

out 

     τ	

5 

Input Output 
in send 

ack 

out 

in 

in 



step 2: error propagation  

send 

0 1 2 3 

4 

ack 

send out 

out 

out 

     τ	
out 

out 

out 

     τ	

5 

ack 

ack 



step 3: subset construction  

send 

0 1 2 3 

4 

send out 

out 

     τ	
out 

out 

out 

ack 

ack 



step 3: subset construction  

send 

0 1 2 3 

4 

out 

out 

     τ	
out 

out 

send 

ack 

ack 



step 3: property construction  

3 

out 

out 

out 

send 

ack 
send 

send 
ack, send, out 

ack 

ack 

0 

4 



weakest assumption in AG reasoning  

〈WA〉 M1 〈P〉 holds (WA could be false) 
〈true〉 M2 〈WA〉 holds implies 〈true〉 M1 || M2 〈P〉 holds 
〈true〉 M2 〈WA〉 not holds implies 〈true〉 M1 || M2 〈P〉 not holds 

1.     〈A〉  M1   〈P〉 
2.  〈true〉  M2  〈A〉 

〈true〉 M1 || M2  〈P〉 

weakest assumption makes  
rule complete 



learning assumptions 

iterative solution +  
intermediate results    

L* learns unknown regular language 
U (over alphabet Σ) and produces 
minimal DFA  A such that L(A) = U 

(L* originally proposed by Angluin)  



(queries)  
should word w be included in L(A)?  

(conjectures)  
here is an A – is L(A) = U? 

yes / no  

yes!  
no: word w should (not) be in L(A)   

the oracle   L* learner   



  query c ↑αA 

〈true〉 M2 〈Ai〉 

oracle for WA in assume-guarantee reasoning   

L* 

query: string s 
〈s〉 M1 〈P〉 

conjecture: Ai 〈Ai〉 M1 〈P〉 

false+crex c c ↑αA 

c ↑αA 

(simulate s on M1 || Perr) 

(model check) 

(model check) 

false+crex c 

〈WA〉 M1 〈P〉 holds 
〈true〉 M2 〈WA〉 holds implies 〈true〉 M1 || M2 〈P〉 holds 
〈true〉 M2 〈WA〉 does not hold implies 〈true〉 M1 || M2 〈P〉 does not hold 

true / false 

true 

P satisfied 

P violated 
true 

false 

1.     〈A〉  M1   〈P〉 
2.  〈true〉  M2  〈A〉 

〈true〉 M1 || M2  〈P〉 



characteristics 

!   terminates with minimal automaton A for  U 
!   generates DFA candidates Ai: |A1| < | A2| < … < |A| 
!   produces at most n candidates, where n = |A| 
!   # queries: O(kn2 + n logm), 

–  m is size of largest counterexample, k is size of alphabet 
!   for assume-guarantee reasoning, may terminate early with a 

smaller assumption than the weakest  

assumptions conjectured by L* are not comparable semantically 



example  

we check: 〈true〉 Input || Output 〈Order〉 
M1 = Input, M2 = Output, P = Order 

assumption alphabet: {send, out, ack} 

Ordererr    in 

    out     out  in 

Output 
 send 

ack 

   out 
 Input 

 in 

ack 

 send 



queries  

E 
Table T  λ 

S λ true 

out false 

S ⋅ Σ 
ack 
out 
send 
out, ack 
out, out 
out, send 

S = set of prefixes 
E = set of suffixes 

true 
false 
true 

false 
false 
false 

Ordererr    in 

    out     out  in 

 Input 
 in 

ack 

 send 
Output 

 send 

ack 

   out 



candidate construction  

E 
Table T  λ 

S λ true 

out false 

S ⋅ Σ 
ack 
out 
send 
out, ack 
out, out 
out, send 

S = set of prefixes 
E = set of suffixes 

2 states – error state omitted 

 ack 
send 

Assumption A1 
true 
false 
true 

false 
false 
false 

Ordererr    in 

    out     out  in 

 Input 
 in 

ack 

 send 
Output 

 send 

ack 

   out 

counterexamples add to S 



conjectures 

 ack 
send 

A1: Oracle 1:  
〈A1〉 Input 〈Order〉 

Counterexample: 
c = 〈in,send,ack,in〉 

Return to L*: 
c↑ Σ = 〈send,ack〉 

Oracle 1:  
〈A2〉 Input 〈Order〉 

True 

Oracle 2:  
〈 true〉 Output 〈A2〉  

True 

 property Order holds  
on Input || Output 

 ack 

 send 

 out, send 

A2: Queries 

Ordererr    in 

    out     out  in 

Output 
 send 

ack 

   out 
 Input 

 in 

ack 

 send 



end of part 1  

please ask LOTS of questions! 
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recap from part I 

!   Compositional Verification 
!   Assume-guarantee reasoning 
!   Weakest assumption 
!   Learning framework for reasoning about 2 components 



compositional verification 

M2 

M1 

A 

satisfies P? 

!   Check P on entire system: too many states! 
!   Use the natural decomposition of the system into its 

components to break-up the verification task 

!   Check components in isolation: 
 Does M1 satisfy P?  
–  Typically a component is designed to satisfy its 

requirements in specific contexts / environments 
!   Assume-guarantee reasoning:  

–  Introduces assumption A representing M1’s “context” 

Does system made up of M1 and M2 satisfy property P? 



assume-guarantee reasoning 

!   Simplest assume-guarantee rule – ASYM 

“discharge” the  
assumption 

1.     〈A〉      M1      〈P〉 
2.    〈true〉    M2    〈A〉 

3.  〈true〉 M1 || M2  〈P〉 

How do we come up with the assumption A? 
(usually a difficult manual process) 

Solution: synthesize A automatically 

!   Reason about triples: 
〈A〉 M 〈P〉 
The formula is true if whenever M is part of a system that 

satisfies A, then the system must also guarantee P 

M2 

M1 

A 

satisfies P? 



the weakest assumption 

!   Given component M, property P, and the interface of M with 
its environment, generate the weakest environment 
assumption WA such that: 〈WA〉 M 〈P〉 holds 

!   Weakest means that for all environments E:  

〈true〉 M || E 〈P〉 IFF 〈true〉 E 〈WA〉 



assumption generation [ASE’02] 

STEP 1: composition, hiding,         
minimization 

property true! 
(all environments) 

STEP 2: backward propagation of 
error along τ transitions 

property false! 
(all environments) 

STEP 3: property extraction (subset 
construction & completion) assumption 



learning for assume-guarantee reasoning 

!   Use an off-the-shelf learning algorithm to build appropriate 
assumption for rule ASYM 

!   Process is iterative 
!   Assumptions are generated by querying the system, and are 

gradually refined  
!   Queries are answered by model checking 
!   Refinement is based on counterexamples obtained by model 

checking 
!   Termination is guaranteed 

1.     〈A〉      M1      〈P〉 
2.  〈true〉     M2     〈A〉 

3.  〈true〉 M1 || M2  〈P〉 



〈true〉 M2 〈Ai〉 

learning assumptions  
!   Use L* to generate candidate assumptions 
!   αA = (αM1 ∪ αP) ∩ αM2  

L* 

query: string s 
true 

false 

〈s〉 M1 〈P〉 

conjecture: Ai 
〈Ai〉 M1 〈P〉 

〈c↑αA〉 M1 〈P〉 

true 

false + cex c 

true 

false 

false + cex c 

P holds in M1 || M2 

P violated in M1 || M2 

1.     〈A〉      M1      〈P〉 
2.  〈true〉     M2     〈A〉 

3.  〈true〉 M1 || M2  〈P〉 

string c ↑αA 

string c ↑αA 

Model Checking 

!   Guaranteed to terminate 
!   Reaches weakest assumption or terminates earlier 

true 



part II 

!   compositional verification 
!   assume-guarantee reasoning 
!   weakest assumption 
!   learning framework for reasoning about 2 components 

extensions: 
!   reasoning about n > 2 components 
!   symmetric and circular assume-guarantee rules  
!   alphabet refinement 



extension to n components 

!   To check if M1 || M2 || … || Mn satisfies P 
–  decompose it into M1 and M’2 = M2 || … || Mn  
–  apply learning framework recursively for 2nd premise of rule 
–  A plays the role of the property 

!   At each recursive invocation for Mj and M’j = Mj+1 || … || Mn  
–  use learning to compute Aj such that 

•  〈Ai〉 Mj 〈Aj-1〉 is true 
•  〈true〉 Mj+1 || … || Mn〈Aj〉 is true 

1.     〈A〉  M1  〈P〉 
2.  〈true〉 M2 || … || Mn 〈A〉 

3.  〈true〉 M1 || M2 … || Mn 〈P〉 



example 

!   Model derived from Mars Exploration 
Rover (MER) Resource Arbiter 
–  Local management of resource 

contention between resource 
consumers (e.g. science instruments, 
communication systems) 

–  Consists of k user threads and one 
server thread (arbiter) 

!   Checked mutual exclusion between 
resources  
–  E.g. driving while capturing a camera 

image are mutually incompatible 

!   Compositional verification scaled to 
>5 users vs. monolithic verification 
ran out of memory [SPIN’06] 

ARB 

U5 

U4 

Request, Cancel 
U3 

U2 

U1 
Grant, Deny 
   Rescind 

Resource Arbiter 



recursive invocation 

!   Compute A1 … A5 s.t. 
〈A1〉 U1 〈P〉  
〈true〉 U2 || U3 || U4 || U5 || ARB 〈A1〉 
          〈A2〉 U2 〈A1〉 
          〈true〉 U3 || U4 || U5 || ARB 〈A2〉 
                    〈A3〉 U3 〈A2〉 
                    〈true〉 U4 || U5 || ARB 〈A2〉 
                             〈A4〉 U4 〈A3〉  

                〈true〉 U5 || ARB 〈A4〉 
                          〈A5〉 U5 〈A4〉  
                          〈true〉 ARB 〈A5〉 

!   Result:  
〈true〉 U1 || .. || U5 || ARB 〈P〉  

U1 

U2 

P 

A2 A1 

ARB 

A1 

U3 

U4 

A2 

A4 A3 

A3 

U5 A5 A4 

A5 



symmetric rules: motivation  

 ack,out,send 

 ack 

 send  out 

 ack 

 send 

 send 

A4: 

 ack 

 send 

 out, send 

A2: 
 ack 
send 

A1: 

 ack 
in 

A1: 
 ack 

 in 

 ack 

A2: 

 send 

M1 = Input, M2 = Output, P = Order 

M1 = Output, M2 = Input, P = Order 

Ordererr    in 

    out     out  in 

Output 
 send 

ack 

   out 
 Input 

 in 

ack 

 send 
 send 



symmetric rules 

!   Assumptions for both components at the same time 
–  Early termination; smaller assumptions 

!   Example symmetric rule – SYM 

!   coAi = complement of Ai, for i=1,2 
!   Requirements for alphabets: 

–  αP ⊆ αM1 ∪ αM2;     αAi ⊆ (αM1 ∩ αM2) ∪ αP, for i =1,2  
!   The rule is sound and complete 
!   Completeness needed to guarantee termination 
!   Straightforward extension to n components 

1.     〈A1〉   M1  〈P〉 
2.     〈A2〉   M2  〈P〉 

3.   L(coA1 || coA2) ⊆ L(P) 

      〈true〉 M1 || M2  〈P〉 

Ensure that any common 
trace ruled out by both 
assumptions satisfies P. 



learning framework for rule SYM 

L* 

〈A1〉 M1 〈P〉 

L* 

〈A2〉 M2 〈P〉 

A1 A2 

false false 

L(coA1 || coA2) ⊆ L(P) 

   counterex. 
analysis 

true true 

false 
P holds in M1||M2 

P violated in M1||M2 

add counterex. add counterex. 

    remove 
counterex. 

remove 
counterex. 

true 



circular rule 

!   Rule CIRC – from [Grumberg&Long – Concur’91] 

!   Similar to rule ASYM applied recursively to 3 components 
–  First and last component coincide 
–  Hence learning framework similar 

!   Straightforward extension to n components 

1.     〈A1〉   M1  〈P〉 
2.     〈A2〉   M2  〈 A1 〉 

3.   〈true〉  M1     〈 A2 〉 

      〈true〉 M1 || M2  〈P〉 



assumption alphabet refinement 

!   Rule ASYM 
–  Assumption alphabet was fixed during learning 
–  αA = (αM1 ∪ αP) ∩ αM2  

!   [SPIN’06]: A subset alphabet  

–  May be sufficient to prove the desired property  

–  May lead to smaller assumption  

!   How do we compute a good subset of the assumption alphabet? 
!   Solution – iterative alphabet refinement 

–  Start with small alphabet 
–  Add actions as necessary 
–  Discovered by analysis of counterexamples obtained from model checking 

M1 

M2 

P 



learning with alphabet refinement 

1. Initialize Σ to subset of alphabet αA = (αM1 ∪ αP) ∩ αM2  

2. If learning with Σ returns true, return true and go to 4. (END) 

3. If learning returns false (with counterexample c), perform 

extended counterexample analysis on c.  

If c is real, return false and go to 4. (END)  

If c is spurious, add more actions from αA to Σ and go to 2. 

4. END 



extended counterexample analysis 

αA = (αM1 ∪ αP) ∩ αM2 
Σ ⊆ αA is the current alphabet 

〈c↑Σ〉 M1 〈P〉	
 〈c↑αA〉 M1 〈P〉	


Refiner: compare 
c↑αA and t↑αA 

Add actions to Σ  
and restart learning 

〈true〉 M2 〈Ai〉 L* 

query 

conjecture: Ai 
false 

c ↑ Σ 

false + cex c 

〈Ai〉 M1 〈P〉 

true 
c ↑ Σ 

false 
+ cex t 

false 

true 

P holds 

P violated 

〈s〉 M1 〈P〉 



alphabet refinement 

Ordererr    in 

    out     out  in 

Output 
 send 

ack 

   out 
 Input 

 in 

ack 

 send 

〈true〉 Output 〈Ai〉    false with c = 〈send, out〉 

∑ = { out }    
c↑Σ = 〈out〉 

〈c↑Σ〉 Input 〈P〉    false with counterex. t = 〈out 〉 

αA = { send, out, ack }    

c↑αA = 〈send, out〉 

〈c↑αA〉 Input 〈P〉    true 

compare 〈out〉 with 〈send, out〉   add “send” to ∑     



characteristics 

!   Initialization of Σ 
–  Empty set or property alphabet αP ∩ αA 

!   Refiner  
–  Compares t↑αA and c↑αA 

–  Heuristics: 

AllDiff adds all actions in the symmetric difference of the trace alphabets 

Forward scans traces in parallel forward adding first action that differs 

Backward symmetric to previous  

!   Termination 
–  Refinement produces at least one new action and the interface is finite 

!   Generalization to n components 
–  Through recursive invocation 

!   See also learning with optimal alphabet refinement 
–  Developed independently by Chaki & Strichman 07 



implementation & experiments 

!   Implementation in the LTSA tool 
–  Learning using rules ASYM, SYM and CIRC 

–  Supports reasoning about two and n components 
–  Alphabet refinement for all the rules 

!   Experiments 
–  Compare effectiveness of different rules 
–  Measure effect of alphabet refinement 
–  Measure scalability as compared to non-compositional verification 

!   Extensions for  
–  SPIN  
–  JavaPathFinder 



case studies 

!   Model of Ames K9 Rover Executive 
–  Executes flexible plans for autonomy 
–  Consists of main Executive thread and ExecCondChecker 

thread for monitoring state conditions 
–  Checked for specific shared variable: if the Executive reads its 

value, the ExecCondChecker should not read it before the 
Executive clears it 

!   Model of JPL MER Resource Arbiter 
–  Local management of resource contention between resource 

consumers (e.g. science instruments, communication systems) 
–  Consists of k user threads and one server thread (arbiter) 
–  Checked mutual exclusion between resources  

K9 Rover 

MER Rover 



results 

!   Rule ASYM more effective than rules SYM and CIRC 

!   Recursive version of ASYM the most effective 
–  When reasoning about more than two components 

!   Alphabet refinement improves learning based assume 
guarantee verification significantly 

!   Backward refinement slightly better than other refinement 
heuristics 

!   Learning based assume guarantee reasoning 
–  Can incur significant time penalties 
–  Not always better than non-compositional (monolithic) verification 
–  Sometimes, significantly better in terms of memory 



Case |A| Mem Time |A| Mem Time Mem Time 

MER 2 40 8.65 21.90 6 1.23 1.60 1.04 0.04 

MER 3 501 240.06 -- 8 3.54 4.76 4.05 0.111 

MER 4 273 101.59 -- 10 9.61 13.68 14.29 1.46 

MER 5 200 78.10 -- 12 19.03 35.23 14.24 27.73 

MER 6 162 84.95 -- 14 47.09 91.82 -- 600 

K9 Rover 11 2.65 1.82 4 2.37 2.53 6.27 0.015 

analysis data 

|A| = assumption size 
Mem = memory (MB) 
Time (seconds) 
-- = reached time (30min) or memory limit (1GB) 

ASYM ASYM + refinement Monolithic 



end of part 1I  

please ask LOTS of questions! 
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example: autonomous rendezvous and docking 

!   input provided as UML state-charts, properties of type: 
–  “you need at least two operational sensors to proceed to next 

mode” 
–  “your state estimator will only return good values if it has good 

readings from at least 2 sensors” 
!   3 bugs detected 
!   scaling achieved with compositional verification: 

–  non-compositional verification runs out of memory after exploring > 
13M states  

–  compositional verification terminates successfully in secs. Analyzes 
one component at a time. The largest assumption has 10 states and 
the largest component has 5947 states (so largest state space 
explored is less that 60K states, as opposed to 13M) 



SPT 
(star planet  

tracker) 

GPS 

IN 
(inertial  

navigation) 

DS 
(docking sensor) 

OrbitalState 



Autonomous Rendez-Vous and Docking 



structure 

part 1 (Dimitra) 
assume-guarantee reasoning 
computing assumptions 
learning assumptions 
discussion 

part 2 (Corina) 
multiple components 
alphabet refinement 
case studies 
discussion 

lunch 

part 3 (Dimitra) 
component interfaces 
compositional JavaPathfinfer 
examples 
discussion 

part 4 (Corina) 
reasoning about code 
abstraction 
related work 
conclusion  



recap in reverse order… 

!  assume-guarantee reasoning 
!  learning framework for 2 components 
!  weakest assumption 



assume-guarantee reasoning 

1.     〈A〉  M1   〈P〉 
2.  〈true〉  M2  〈A〉 

〈true〉 M1 || M2  〈P〉 

M2 

M1 

A 

satisfies P? 

reasons about triples: 
〈A〉 M 〈P〉 
is true if whenever M is part of a system that  
satisfies A, then the system must also guarantee P 

simplest assume-guarantee rule (ASYM): 



  query c ↑αA 

〈true〉 M2 〈Ai〉 

learning assumptions for AG reasoning   

L* 

query: string s 
〈s〉 M1 〈P〉 

conjecture: Ai 〈Ai〉 M1 〈P〉 

false+crex c c ↑αA 

c ↑αA 

false+crex c 

true / false 

true 
P holds in M1 || M2 

P violated in M1 || M2 

true 

false 

true 

1.     〈A〉  M1   〈P〉 
2.  〈true〉  M2  〈A〉 

〈true〉 M1 || M2  〈P〉 



the weakest assumption 

!   given component M, property P, and the interface ∑ of M 
with its environment, generate the weakest environment 
assumption WA such that: 〈WA〉 M 〈P〉 holds 

!   weakest means that for all environments E:  

〈true〉 M || E 〈P〉 IFF 〈true〉 E 〈WA〉 

M 

 P 

WA 



assumption generation [ASE’02] 

STEP 1: composition, hiding,         
minimization 

property true! 
(all environments) 

STEP 2: backward propagation of 
error along τ transitions 

property false! 
(all environments) 

STEP 3: property extraction (subset 
construction & completion) assumption 



part III 

!  assume-guarantee reasoning 
!  learning framework for 2 components 
!  weakest assumption WA 

!  component interfaces / learning WA 
!  compositional JavaPathFinder 
!  examples and discussion  



  beyond syntactic interfaces 
(“open” file before “close”) 

  document implicit assumptions 

weakest assumption (WA): 
  safe: accept NO illegal sequence 

of calls 
  permissive: accept ALL legal 

sequences of calls 

component interfaces 



safety check 

M0 

Merror M1 M2 

a 

b 
c 

b 

c 

M0 

A0 

M1 

A1 

M2 

A0 

M1 

A0 

a 

b 

c 

A1 

a 

b, c 
A0 



permissiveness check 
M0 

Merror M1 M2 

a 

b 
c 

b 

M0 

A0 

M1 

A1 

M2 

A0 

M1 

A0 

a 

b 

c 

A0 A1 
b, c 

Aerror 
b, c 

a 

M2 

Aerror 

M1 

Aerror 

Merror 

Aerror 

c 

b 

b 

a 



permissiveness: the problem 
M0 

Merror M1 M2 

a 

b 
c 

b 

M0 

A0 

M1 

A1 

M2 

A1 

a 

b 

c Merror 

Aerror 
b 

A0 A1 
a 

Aerror 

a b 

b τ	


τ	


M1 

Aerror 



(queries)  
should word w be included in L(A)?  

(conjectures)  
here is an A – is L(A) = U? 
(is A safe and permissive?) 

yes / no  

yes!  
no: word w should (not) be in L(A)   

the oracle   L* learner   



queries (simulate / model check)   

conjecture – safe (model check)   

conjecture – permissive 

learning interfaces 

Alur et al, 2005, Henzinger et al, 2005  



our approach (Giannakopoulou & Pasareanu, FASE 2009) 

M0 

A0 

M1 

A1 

M2 

A1 

a 

b 

Merror 

Aerror 
b 

τ	


M1 

Aerror 

model check for (Mi, Aerror) 

query “a b”   
reached (M1, Aerror) by “a b” 

backtrack and continue search… 
no (“a b” should not be in A)  



invoke a model checker 

within a model checker?  



permissiveness check 

MC: model check for (Mi, Aerror) 
reached (Mi, Aerror) by trace t 

backtrack and continue search 
if (memoized(t) == no) // t is spurious 

if (query(t) == yes) 
return t to L* // not permissive  

else  // memoized(t) == yes or t not in memoized  
model checker produces t 

else restart at MC   



example  

 ack,out,send 

 ack 

 send  out 

 ack 

 send 

 send 

 ack 

 send 

 out, send 

Ordererr    in 

    out     out  in 

 Input 
 in 

ack 

 send 

assumption learned for 
AG reasoning weakest assumption 

〈 ack, out 〉 ? 

module M 

Output 
 send 

ack 

   out 



complete module for permissiveness check 

Ordererr    in 

    out     out  in 

 Input 
 in 

ack 

 send 

 in 

ack 

 send 
 Complete_Input 

 in, ack 
 in, 
send 

 send,    
ack 

 in, send, ack 

•  queries performed on Input || Ordererr 

•  safety checked on Input || Ordererr|| Aerr 

•  permissiveness performed on  
 Complete_Input || Ordererr|| Aerr 

 check reachability of states:  
 (sink, *, error) or (*, non error, error) 

module M 

〈 ack, out 〉:    (sink, error, error) 

 ack 

 send 

 out, send ack out 

 Aerr 



in summary… 

resolve non-determinism  
   dynamically & selectively 



remember, it’s a heuristic 

M0 

A0 

M1 

A1 

M2 

A1 

a b 

Merror 

Aerror 

b 

M1 

Aerror 

a 

c 



  query c ↑αA 

〈true〉 M2 〈Ai〉 

assume-guarantee reasoning 

conjecture: Ai 〈Ai〉 M1 〈P〉 

false+crex c 

c ↑αA 

false+crex c 

true 

P holds in M1 || M2 

P violated in M1 || M2 

true 
false 

only need permissiveness with respect to M2 ! 

L* 

query: string s 

true 



assume-guarantee reasoning 

JavaPathfinder 

interface generation / discharge 

UML statecharts 

http://babelfish.arc.nasa.gov/trac/jpf 
jpf-cv 



UML framework in JPF 

!   JPF supports model checking of 
UML state-machines with an 
approach that consists of three 
steps: 
–  translate the UML model into a 

corresponding Java program, 
using JPF’s state chart (sc) 
extension and application model 

–  choose model properties to 
verify, and configure verification 
tools accordingly 

–  optionally provide a guidance 
script that represents the 
environment of the model 
(external event sequence) 



 package ICSETutorial; 

import gov.nasa.jpf.sc.State; 

public class Input extends State { 

  class S0 extends State { 
    
      public void input() { 
          setNextState(s1); 
      } 
  } S0 s0 = makeInitial(new S0()); 

  class S1 extends State { 
        
      public void send() { 
          setNextState(s2); 
      } 
  } S1 s1 = new S1(); 

  class S2 extends State { 
        
      public void acknowledge() { 
          setNextState(s0); 
      } 
  } S2 s2 = new S2(); 
} 

example 

2 1 

 input send 

acknowledge 

0 



AG reasoning in JPF 

JavaPathfinder 
(CVState.AutomatonState)	


SCSafetyListener 

SCSafetyAutomaton 



assumptions 

SCSafetyListener 

SCSafetyAutomaton 

!   choiceGeneratorAdvanced 
−  if selected action leads assumption to error state then do 

“vm.getSystemState().setIgnored(true)” (backtrack)  

!   instructionExecuted 
−  advance automaton & set CVState.AutomatonState  

!   stateBacktracked 
−  get CVState.AutomatonState 

JavaPathfinder 
(CVState.AutomatonState)	




properties 

!   instructionExecuted 
−  advance automaton & set CVState.AutomatonState 
−  if automaton reaches error state, then check() returns false  

!   stateBacktracked 
−  get CVState.AutomatonState 

SCSafetyListener 

SCSafetyAutomaton 

JavaPathfinder 
(CVState.AutomatonState)	




interface generation in JPF 

!  queries and assumption safety checks 
–  same as assume-guarantee reasoning   

!  assumption permissiveness check 
–  requires special listener  



conformance listener 
!   executeInstruction 

−  if instruction to be executed is assertion violation, then perform 
“ti.skipInstruction()” (do not process exception) and 
“vm.getSystemState().setIgnored(true)” (backtrack)  

!   instructionExecuted 
−  advance automaton & set CVState.AutomatonState  
−  if automaton reaches error state, check memoized table (why?) 
         if counterexample stored and spurious, backtrack 
         else check() returns false      

!   stateBacktracked 
−  get CVState.AutomatonState 



boolean done = false; 
while (!done){ 
    counterexample = null; 

    …     

    SCConformanceListener assumption = new SCConformanceListener( 
 new SCSafetyAutomaton(false, assume, alphabet_, "Assumption", 
 CompleteModule , memoized_)); 

    JPF jpf = createJPFInstance(assumption, property, CompleteModule); 
    jpf.run(); 

    Path jpfPath = assumption.getCounterexample(); 
    if (jpfPath != null){ 
    //nonerror in M & error in Aerr - this is what we are looking for 

 counterexample = assumption.convert(jpfPath); 
 if( query(counterexample)){ // cex is in L(A) 
     done = true; // a real counterexample for L* 
 } // otherwise you need to continue with your loop 

    }else 
 done = true; // interface is permissive 

} 

permissiveness check 



 package ICSETutorial; 

import gov.nasa.jpf.sc.State; 
   import gov.nasa.jpf.cv.CVState; 

public class InputWithProperty 
extends CVState { 

  class S0 extends State { 
    
      public void input() { 
          setNextState(s1); 
      } 

          public void output() { 
          assert(false); 
      } 

     } S0 s0 = makeInitial(new S0()); 

     . . .   
   } 

Input component with Order Property: 

input output example 

S0 = ( send -> S2 
     | acknowledge -> S1), 
S1 = ( output -> S1 
     | send -> S1 
     | acknowledge -> S1), 
S2 = ( output -> S3 
     | send -> S1), 
S3 = ( send -> S1 
     | acknowledge -> S0). 



example 2  



!   tool: JavaPathfinder 
!   UML statechart model of the 

Ascent and EarthOrbit flight phases 
of a spacecraft 

!   properties: 
–  “An event lsamRendezvous, which 

represents a docking maneuver with 
another spacecraft, fails if the LAS 
(launch abort system) is still 
attached to the spacecraft” 

–  “Event tliBurn (trans-lunar interface 
burn takes spacecraft out of the 
earth orbit and gets it into transition 
to the moon) can only be invoked if 
EDS (Earth Departure Stage) rocket 
is available” 

example: crew exploration vehicle 



 Assumption 1: 

 lasJetisson 

 lasJetisson 
 lsamRendezvous 

 Assumption 2: 

 lsamRendezvous 

tliBurn 
 lsamRendezvous 

generated interface assumptions encode Flight Rules in terms of events 

results 



conclusions 
!   learning assumptions is not a panacea 

–  may perform worse than monolithic verification 
–  performs well when alphabets & assumptions are small 

!   computed interfaces may not be permissive 
–  in our studies interfaces were satisfactory 
–  there is more to say about this in part IV 

!   limited to statecharts 
–  but wish to extend; it’s open source, help us!!! 

!   got funding 
–  so expect a lot of activity on jpf-cv over the next year  
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part IV 

!  reasoning about code 
!  introducing abstraction 

!  to reason about very large or infinite state spaces 

!  related approaches 



reasoning about code 

!   Does M1 || M2 satisfy P?  Model check; build assumption A 
!   Does C1 || C2 satisfy P?  Model check; use assumption A 

[ICSE’2004] – good results but may not scale 
Solution: replace model checking with testing! 

M1 

C1 

M2 

C2 

Design 

Code 

P A 

A P 



introducing abstraction… 

!   apply predicate abstraction [Graf & Saidi, CAV 1997] 
!   apply learning to abstracted components 
!   use counterexamples to automatically refine abstractions as 

needed, using CEGAR (Counter-example Guided Abstraction 
Refinement) [Clarke et al., CAV 2000] 

!   interfaces: novel combination of under- and over- approximations 
with L* avoids exponentially expensive determinization step and 
generates minimal and precise interfaces [CAV 2010] 

!   implemented in ARMC model checker (and previously Magic) 
!   successfully applied to several benchmarks (Java2SDK library 

classes, OpenSSL)  



CEGAR for compositional verification 

!   CEGAR: counterexample guided abstraction 
refinement – Clarke et al. 00  
–  incremental construction of abstractions 
–  abstractions are conservative 
–  abstract counterexamples obtained may be 

spurious (due to over-approximation) 
–  spurious counterexamples are used for 

abstraction refinement 
!   two level compositional abstraction 

refinement – Chaki et al. 03 
–  analyze C1 || C2 || … || Cn ╞ P 
–  build finite-state abstractions: A1, A2, … An 
–  minimize: M1, M2, … Mn 

–  analyze: M1 || M2 || … || Mn ╞ P ? 
–  refine based on counterexamples 

!   permissive interfaces – Henzinger et al. 05 
–  uses CEGAR to compute interfaces 

C 

abstraction 

A 

model checking 
A╞ P 

counterexample 
analysis 

false 

spurious 

refine 

true 

real 

C╞ P 

C╞ P 

CEGAR loop 



!   Challenge: instead of learning A, build A as an abstraction of M2 

!   build A as an abstraction of M2; 〈true〉 M2 〈A〉 holds by construction 

!   check Premise 1:  〈A〉 M1 〈P〉 
!   obtained counterexamples are analyzed and used to refine A 
!   variant of CEGAR with differences: 

–  use counterexample from M1 to refine abstraction of M2 
–  A keeps information only about the interface (abstracts away the internal info) 

!   implemented in LTSA; combined with alphabet refinement;  
!   compares favorably with learning approach 
!   [CAV’08] 

1.     〈A〉      M1      〈P〉 
2.  〈true〉     M2     〈A〉 

3.  〈true〉 M1 || M2  〈P〉 

assume-guarantee abstraction refinement (AGAR) 



AGAR vs learning 



compositional verification for C 

C1||C2|=P 

spurious 

C1||C2 |= P 

true 

false 

   counterexample 
analysis 

learning framework 

predicate  
abstraction 

M1 

C1 

predicate  
abstraction 

M2 

refine 

!   Check composition of software C components  
    C1||C2 |= P 

C2 

refine 

spurious 



interface generation for infinite-state components 

Component  
C 

Predicate 
abstraction 

Cmust 

• Finite under-approx 
• Deterministic 

Theorem: 
An interface A permissive w.r.t C's must abstraction safe w.r.t C's  
may abstraction and is safe and permissive for C. 

Cmay 

• Finite over-approx 

Learn 
Interface 

Amust 

• Safe 
• Permissive 

Check 
Safety 

Refine Return  
Amust 

cex no cex 



interface generation for infinite-state components 

!   conceptually simple and elegant  
!   expensive learning restarts 

!   need of tighter integration of abstraction refinement with L* 
!   LearnReuse method 



Query(σ, C) 

1.  if checkSafe(σ,Cmust) != null 
2.         return “no” 
3.  cex = checkSafe(σ,Cmay) 
4.  if cex == null 
5.         return “yes” 
6.  Preds = Preds U Refine(cex) 
7.  Query(σ, C) 



Conjecture : Oracle 1 

1.  cex = checkSafe(A, Cmay) 
2.  if cex == null 
3.         invoke Oracle2 
4.  If Query(cex, C) == “no” 
5.         return cex to L* 
6.  else 
7.  goto 1 



Conjecture : Oracle 2 

1.  cex = checkPermissive(A, Cmust) 
2.  if cex == null 
3.         return A 
4.  If Query(cex, C) == “yes” 
5.         return cex to L* 
6.  else 
7.  goto 1 



NASA case study 

!   NASA CEV 1.5 EOR-LOR mission 
!   26 methods 

!   Only LearnReuse finished 
!   74 predicates, 14 states 
!   52 minutes 



our previous work at a glance  

  learning-based AG reasoning (TACAS 2003)  
  recursive application of simple rule for reasoning about n > 2 

components (FMSD 2009) 
  symmetric and circular assume-guarantee rules (SAVCBS 2003, 

FMSD 2009)  
  assume-guarantee reasoning for code (ICSE 2004, SAVCBS 

2005, IET Software 2009) 
  learning with alphabet refinement (TACAS 2007) 
  learning assumptions for interface automata (FM 2008) 
  assume-guarantee abstraction refinement (CAV 2008)  
  interface generation in JPF (FASE 2009)  
  interface generation for large/infinite-state components (CAV 

2010) 



other related work 

Henzinger et al, 2005 
Alur et al, 2005 (1)  Whaley et al, 2002 

Tkachuk et al, 2003 

Groce et al, 2002 
Margaria et al, 2007 

Ammons et al, 2002  

Chen et al, 2009 

Farzan et al, 2008 

Gupta et al, 2007 
Alur et al, 2005 (2) 

Bollig et al, 2009 

Chaki et al, 2005-2007 
Cobleigh et al, 2006 

(interfaces) 

(L* for AG reasoning) 

(L* for model extraction) 
(L* for NFAs & liveness) 

(L* for separating automata) 



other related work 
!   minimal separating automaton for disjoint languages L1 and L2 

–  accept all words in L1 

–  accept no words in L2 

–  have the least number of states 

!   assume-guarantee reasoning 
–  minimal separating automaton for L(M2) and L(M1) ∩ L(coP) 

!   algorithms 
–  Gupta at al. 07: query complexity exponential in the size of the 

minimal DFAs for the two input languages 
–  Chen et al. 09: query complexity quadratic in the product of the sizes 

of the minimal DFAs for the two input languages. Use 3 valued DFAs 

!   compositional verification in symbolic setting (Alur et al. 05) 
!   learning omega-regular languages for liveness (Farzan et al. 08) 
!   learning non-deterministic automata (Bollig et al. 09) 



thank you! 



part IV 

!  parts I – III: reasoning about finite-state models 

!  reasoning about code 
!  introducing abstraction 

to reason about very large or infinite state spaces 

!  related approaches 



reasoning about code 

!   Does M1 || M2 satisfy P?  Model check; build assumption A 
!   Does C1 || C2 satisfy P?  Model check; use assumption A 

[ICSE’2004] – good results but may not scale 
Solution: replace model checking with testing! [IET Software 2009] 

M1 

C1 

M2 

C2 

Design 

Code 

P A 

A P 



abstraction 

!   Reduces large/infinite data domains into small/finite abstract 
domains; e.g. replace int with {ZERO, POS, NEG} 

!   Produces a finite state abstract model that operates on the 
abstract domain 

!   Abstraction maps 
–  Concrete states to abstract states 
–  Concrete transitions to abstract transitions 

!   Framework of abstract interpretation 



may and must abstraction 

!   May abstraction produces a finite over-approximation 
!   Must abstraction produces a finite under-approximation 

must	  transi*on	   may	  transi*on	  

Cmust	  

	  	  	  C	  
Cmay	  



abstraction in compositional verification 

!   apply (predicate) abstraction [Graf & Saidi, CAV 1997] 
!   apply learning to abstracted components 
!   use counterexamples to automatically refine abstractions/assumptions as 

needed [Magic] 

!   use abstraction refinement as an alternative to learning for building 
assumptions [AGAR, CAV 2008] 

!   interfaces: novel combination of under- and over- approximations with L* 
avoids exponentially expensive determinization step and generates minimal and 
precise interfaces [CAV 2010] 

!   implemented in ARMC model checker 
!   successfully applied to several benchmarks (Java2SDK library classes, OpenSSL)  



CEGAR 

!   CEGAR: counterexample guided 
abstraction refinement [Clarke 
et al. 00]  
–  incremental construction of (may) 

abstractions 
–  abstract counterexamples obtained 

may be spurious (due to over-
approximation) 

–  spurious counterexamples are used 
for abstraction refinement 

C 

abstraction 

Cmay 

model checking 
Cmay╞ P 

counterexample 
analysis 

false 

spurious 

refine 

true 

real 

C╞ P 

C╞ P 

CEGAR loop 	  	  	  C	  
Cmay	  



CEGAR for compositional verification 

!   two level compositional abstraction refinement – 
Chaki et al. 03 
–  analyze C1 || C2 || … || Cn ╞ P 
–  build finite-state abstractions: A1, A2, … An 
–  minimize: M1, M2, … Mn 
–  analyze: M1 || M2 || … || Mn ╞ P ? 
–  refine based on counterexamples 

!   permissive interfaces – Henzinger et al. 05 
–  uses CEGAR to compute interfaces 



learning-based compositional verification for C code 

C1||C2|=P 

spurious 

C1||C2 |= P 

true 

false 

   counterexample 
analysis 

learning framework 

predicate  
abstraction 

C1
may 

C1 

predicate  
abstraction 

C2
may 

refine 

!   Check composition of software C components C1||C2 |= P 
!   C1, C2 are large/infinite state 

C2 

refine 

spurious 



!   Challenge: instead of learning A, build A as an abstraction of M2 

1.     〈A〉      M1      〈P〉 
2.  〈true〉     M2     〈A〉 

3.  〈true〉 M1 || M2  〈P〉 

assume-guarantee abstraction refinement (AGAR) 



!   Challenge: instead of learning A, build A as an abstraction of M2 

!   build A as an (may) abstraction of M2; 〈true〉 M2 〈A〉 holds by construction 

!   check Premise 1:  〈A〉 M1 〈P〉 
!   obtained counterexamples are analyzed and used to refine A 
!   variant of CEGAR with differences: 

–  use counterexample from M1 to refine abstraction of M2 
–  A keeps information only about the interface (abstracts away the internal info) 

!   implemented in LTSA; combined with alphabet refinement;  
!   compares favorably with learning approach 
!   [CAV’08] 

1.     〈A〉      M1      〈P〉 
2.  〈true〉     M2     〈A〉 

3.  〈true〉 M1 || M2  〈P〉 

assume-guarantee abstraction refinement (AGAR) 



AGAR vs learning 



	  	  	  L(A)	  

interface generation for infinite-state components 

!   Use predicate abstraction to build may and must abstractions of 
component C 

!   Lsafe(C)=Lerr(C) 
Interface A is safe: L(A) ⊆ Lsafe(C) 
Interface A is permissive: Lsafe(C) ⊆ L(A) 

!   Theorem: 
An interface A permissive w.r.t. C's must abstraction and safe w.r.t C's may 

abstraction is safe and permissive for C. 

Cmust	  ,	  Lerr

(Cmust)	  

	  	  	  C,	  Lerr(C)	  
Cmay,Lerr(Cmay)	  

Lsafe(Cmay)	  

	  	  	  Lsafe(C)	  
Lsafe(Cmust)	  

	  	  	  L(A)	  



interface generation for infinite-state components 

Predicate 
abstraction 

Learn Interface 

Check 
Safety 

Refine 
cex 

no cex 

Component  
C 

Cmust 

Finite under-approx 
Deterministic 

Cmay 

Finite over-approx 

Amust 

Safe 
Permissive 

Return  
Amust 

Correctness:  
If algorithm terminates then the returned interface A is safe and permissive for C.  



interface generation for infinite-state components 

!   conceptually simple and elegant  
!   expensive learning restarts 

!   need of tighter integration of abstraction refinement with L* 
!   LearnReuse method 



Query(σ, C)  

1.  if checkSafe(σ,Cmust) != null 
2.         return “no” 
3.  cex = checkSafe(σ,Cmay) 
4.  if cex == null 
5.         return “yes” 
6.  Preds = Preds U Refine(cex) 
7.  Query(σ, C) 

Gives answers consistent with C 

Cmust	  ,	  Lerr

(Cmust)	  

	  	  	  C,	  Lerr(C)	  
Cmay,Lerr(Cmay)	  



Conjecture : Oracle 1 

1.  cex = checkSafe(A, Cmay) 
2.  if cex == null 
3.         invoke Oracle2 
4.  If Query(cex, C) == “no” 
5.         return cex to L* 
6.  else 
7.  goto 1 



Conjecture : Oracle 2 

1.  cex = checkPermissive(A, Cmust) 
2.  if cex == null 
3.         return A 
4.  If Query(cex, C) == “yes” 
5.         return cex to L* 
6.  else 
7.  goto 1 



NASA case study 

!   NASA CEV 1.5 EOR-LOR mission 
!   26 methods 

!   Only LearnReuse finished 
!   74 predicates, 14 states 
!   52 minutes 



our previous work at a glance  

  learning-based AG reasoning (TACAS 2003)  
  recursive application of simple rule for reasoning about n > 2 

components (FMSD 2009) 
  symmetric and circular assume-guarantee rules (SAVCBS 2003, 

FMSD 2009)  
  assume-guarantee reasoning for code (ICSE 2004, SAVCBS 

2005, IET Software 2009) 
  learning with alphabet refinement (TACAS 2007) 
  learning assumptions for interface automata (FM 2008) 
  assume-guarantee abstraction refinement (CAV 2008)  
  interface generation in JPF (FASE 2009)  
  interface generation for large/infinite-state components (CAV 

2010) 



other related work 

Henzinger et al, 2005 
Alur et al, 2005 (1)  Whaley et al, 2002 

Tkachuk et al, 2003 

Groce et al, 2002 
Margaria et al, 2007 

Ammons et al, 2002  

Chen et al, 2009 

Farzan et al, 2008 

Gupta et al, 2007 
Alur et al, 2005 (2) 

Bollig et al, 2009 

Chaki et al, 2005-2007 
Cobleigh et al, 2006 

(interfaces) 

(L* for AG reasoning) 

(L* for model extraction) 
(L* for NFAs & liveness) 

(L* for separating automata) 



other related work 
!   minimal separating automaton for disjoint languages L1 and L2 

–  accept all words in L1 

–  accept no words in L2 

–  have the least number of states 

!   assume-guarantee reasoning 
–  minimal separating automaton for L(M2) and L(M1) ∩ L(coP) 

!   algorithms 
–  Gupta at al. 07: query complexity exponential in the size of the 

minimal DFAs for the two input languages 
–  Chen et al. 09: query complexity quadratic in the product of the sizes 

of the minimal DFAs for the two input languages. Use 3 valued DFAs 

!   compositional verification in symbolic setting (Alur et al. 05) 
!   learning omega-regular languages for liveness (Farzan et al. 08) 
!   learning non-deterministic automata (Bollig et al. 09) 



conclusion 

!   Compositional verification and assume-guarantee reasoning 
!   Techniques for automatic assumption generation and 

compositional verification  
–  Finite state systems and safety properties 

!   Data abstraction to deal with very large/infinite state spaces 
!   Techniques are promising in practice 
Future: 
!   Techniques for discovering good system decompositions 
!   Parallelization for increased scalability 
!   Beyond safety: liveness, timed properties, probabilistic 

reasoning 
!   Run-time analysis 
!   More? 



thank you! 


